Benha University		Final Exam
Faculty of Engineering - Shoubra		
Cepartment of Elec. Eng. and Control		
Duration: 2 hours	Code: EMP 201	
Date: January, 2019		

Question 1

(a)Find the first derivatives of the function F and find $\nabla \mathrm{F}, \nabla . \nabla \mathrm{F}, \nabla \times \nabla \mathrm{F}$ where $F=e^{x}+y \ln x-z^{3} \cos y$.
(b)Find the envelope of the curves: $(x-b)^{2}+(y-b)^{2}=2$
(c)Determine the extrema of the function : $f(x, y)=x^{2}+y^{3}-2 x y-5 y$

Question 2

(a) Find $\bar{U}_{x}, \nabla . \overline{\mathrm{U}}$ and $\nabla \mathrm{x} \overline{\mathrm{U}}$ where $\overline{\mathrm{U}}=\left(\mathrm{x}^{2} \sin \mathrm{y}\right) \mathrm{i}+\left(\mathrm{ye}^{\mathrm{z}}\right) \mathrm{j}+(\mathrm{z} \cos \mathrm{x}) \mathrm{k}$.
(b)From the curve : $x=t^{3}, y=(t+2)^{2}, t$ in [1,2].

Find the area A, the arc length L and the volume V_{x}.
(c)Findthe integral $\int_{(0,0)}^{(2,1)}\left(x+y^{2}\right) d x+(x+y) d y$ through the curve $x=y^{3}+1$

Question 3

(a)Write the Fourier series of $f(x)=x, \quad-\pi \leq x \leq \pi, f(x+2 \pi)=f(x)$.

Also, by Barseval's identity find $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
(b)Write the Fourier cosine of the function $f(x)=x+1$, x in $[0,1], f(x+2)=f(x)$ Also, by Barseval's identity find $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{4}}$

Question 4

Write the Fourier series of $f(x)=\left\{\begin{array}{l}0,-2 \leq x<0 \\ x, \quad 0 \leq x \leq 2\end{array}\right.$ and $f(x+4)=f(x)$.
Also, Find the sum $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.

